Part Number Hot Search : 
BD546B 1N5310 SFBCP HER158 RTS10 MCR18EZ 00C1XA FDS66
Product Description
Full Text Search
 

To Download V23990-P760-A-D4-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p760-a-pm datasheet flow pim 2 3rd 1200 v / 100 a 3~rectifier,brc,inverter, ntc very compact housing, easy to route igbt4/ emcon4 technology for low saturation a losses and improved emc behavior motor drives power generation v23990p760apm tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 100 t c =80c 100 t h =80c 114 t c =80c 172 maximum junction temperature t j max 150 c inverter igbt t h =80c 105 t c =80c 120 t h =80c 263 t c =80c 398 t sc t j 150c 10 s v cc v ge =15v 800 v 300175 input rectifier diode a w t p =10ms t j =t j max t j =t j max t p limited by t j max maximum junction temperature power dissipation v ge t j max p tot short circuit ratings gateemitter peak voltage av c v a types i2tvalue maximum ratings i fav a 2 s i fsm condition dc current forward current surge forward current 1000 p tot power dissipation i 2 t 5000 t j =25c t j =t j max features flow 2 housing target applications schematic collectoremitter break down voltagerepetitive peak collector current dc collector current v ce i cpulse i c 1200 20 w a copyright vincotech 1 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter fwd t h =80c 86 t c =80c 114 t h =80c 150 t c =80c 230 brake igbt t h =80c 59 t c =80c 76 150 t h =80c 159 t c =80c 241 20 t sc t j 150c 10 s v cc v ge =15v 900 v brake inverse diode t h =80c 20 t c =80c 20 t h =80c 52 t c =80c 79 brake fwd 1200 t h =80c 35 t c =80c 40 t h =80c 75 t c =80c 114 200 1200 20 1200 1200 175 t p limited by t j max t p limited by t j max t p limited by t j max peak repetitive reverse voltage c maximum junction temperature t j max 175 w power dissipation p tot dc forward current a t j =t j max t p limited by t j max a i f t j =t j max v rrm peak repetitive reverse voltagerepetitive peak forward current maximum junction temperature i frm t j max t j =t j max i c p tot v ce i cpuls power dissipation p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm w a w 50 175 c va v rrm peak repetitive reverse voltagerepetitive peak forward current i frm a a t j =t j max v ge i f t j =t j max v c short circuit ratings dc collector current power dissipation collectoremitter break down voltagerepetitive peak collector current gateemitter peak voltage va v w a maximum junction temperature t j max 175 v rrm dc forward current p tot maximum junction temperature t j max brake inverse diode t j =t j max c v copyright vincotech 2 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal propertiesinsulation properties v is t=1min 4000 v dc min 12,7 mm min 12,7 mm clearance insulation voltagecreepage distance t op operation temperature under switching condition 40+tjmax25 c storage temperature t stg 40+125 c copyright vincotech 3 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,18 1,9 tj=125c 1,16 tj=25c 0,88 tj=125c 0,75 tj=25c 0,003 tj=125c 0,004 tj=25c 0,05 tj=125c 1,1 thermal resistance chip to heatsink r thjh 0,62 thermal resistance chip to case r thjc 0,41 tj=25c 5 5,8 6,5 tj=150c tj=25c 1,9 2,5 tj=150c 2,34 tj=25c 0,03 tj=150c tj=25c 700 tj=150c tj=25c 126 tj=150c 130 tj=25c 17 tj=150c 22 tj=25c 242 tj=150c 316 tj=25c 63 tj=150c 115 tj=25c 4,07 tj=150c 6,64 tj=25c 5,22 tj=150c 8,71 thermal resistance chip to heatsink r thjh 0,36 thermal resistance chip to case r thjc 0,24 coupled thermal resistance transistortransistor r thjhtt 0,08 coupled thermal resistance diodetransistor r thjhdt 0,08 tj=25c 1,83 2,4 tj=150c 1,86 tj=25c 167 tj=150c 191 tj=25c 134 tj=150c 293 tj=25c 9,39 tj=150c 19,67 di(rec)max tj=25c 7887 /dt tj=150c 3332 tj=25c 3,82 tj=150c 8,55 thermal resistance chip to heatsink r thjh 0,63 thermal resistance chip to case r thjc 0,41 coupled thermal resistance diodediode r thjhdd coupled thermal resistance transistordiode r thjhtd 0,07 v mws k/w c k/w pf ns mws a ns a/s v 410 5540 2 thermal grease thickness 50m = 0,61 w/mk rgon=4 thermal grease thickness 50m = 0,61 w/mk 15 1500 100100 100 0,0034 collectoremitter saturation voltageturnon energy loss per pulse rise time gateemitter leakage currentintegrated gate resistor inverter igbt turnoff energy loss per pulse inverter fwd v ce(sat) i ces collectoremitter cutoff current incl. diodefall time turnoff delay time turnon delay time t r t d(off) t d(on) 600 rgon=4 e off 100 rgoff=4 15 1200 nc 580 320 025 reverse current thermal grease thickness50 m = 0,61 k/w vv ma i r 100 conditions characteristic values forward voltagethreshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode value v ge(th) gate emitter threshold voltage c oss r gint i ges t f e on peak reverse recovery current c ies q rr t rr q gate v f c rss f=1mhz input capacitanceoutput capacitance reverse transfer capacitance diode forward voltage gate charge 20 15 v ce =v ge 100 100 reverse recovery time i rrm reverse recovered energy erec peak rate of fall of recovery current reverse recovered charge 00 15 600 tj=25ctj=25c ma v na copyright vincotech 4 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max conditions characteristic values value tj=25c 5 5,8 6,5 tj=150c tj=25c 1,84 2,3 tj=150c 2,27 tj=25c 0,25 tj=150c tj=25c 700 tj=150c 4 tj=25c 117 tj=150c 121 tj=25c 18 tj=150c 24 tj=25c 249 tj=150c 316 tj=25c 88 tj=150c 125 tj=25c 2,39 tj=150c 3,43 tj=25c 2,96 tj=150c 4,8 thermal resistance chip to heatsink r thjh 0,6 thermal resistance chip to case r thjc 0,39 tj=25c 1,1 1,84 2,1 tj=150c 1,8 thermal resistance chip to heatsink r thjh 1,81 k/w thermal resistance chip to case r thjc 1,20 k/w tj=25c 1,87 2,2 tj=150c 1,83 tj=25c 10 tj=150c tj=25c 54,29 tj=150c 78,18 tj=25c 158,7 tj=150c 295,4 tj=25c 3,21 tj=150c 6,6 di(rec)max tj=25c 4114 /dt tj=150c 3412 tj=25c 3,21 tj=150c 6,6 thermal resistance chip to heatsink r thjh 1,27 thermal resistance chip to case r thjc 0,84 20,9 22 23,1 160 tj=25c tj=25c tc=100c tj=25c tj=25c tj=25c 600 600 25 10 960 5050 15 600 25 f=1mhz 15 0 thermal grease thickness 50m = 0,61 w/mk thermistor reverse recovery energy v f brake fwd diode forward voltagereverse leakage current i r t rr q rr e rec thermal grease thickness 50m = 0,61 w/mkthermal grease thickness 50m = 0,61 w/mk i rrm 15 mws ns ma na vv 1200 15 20 205 brake igbt rgon=8 rgoff=8 v ge(th) collectoremitter saturation voltage v ce(sat) turnon delay time v ce =v ge rated resistance r 25 k deviation of r100 d r/r r100=1486.1tol. 3% tol. 5% %/k bvalue b (25/100) k power dissipation given epcostyp p mw 0 15 mws c v a ns a/s a r gint t d(on) integrated gate resistor i ces i ges collectoremitter cutoff incl diodegateemitter leakage current gate emitter threshold voltage v 290 k/w nc reverse recovery timepeak rate of fall of recovery current peak reverse recovery current reverse recovered charge rgon=8 0 diode forward voltage v f reverse transfer capacitance q gate brake inverse diode gate charge turnon energy loss per pulse rise timeturnoff delay time t d(off) t f e on fall time output capacitance c rss c ies e off c oss turnoff energy loss per pulseinput capacitance t r 50 0,001750 2,9 2770 210 4000 k/w pf copyright vincotech 5 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c vge from 7 v to 17 v in steps of 1 v vge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as ic = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) 0 20 40 60 80 100 0 2 4 6 8 10 12 v ge (v) i c (a) tj = 25c tj = tj max -25c 0 50 100 150 200 250 300 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) tj = 25c tj = tj max -25c 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 6 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a r goff = 4 figure 7 output inverter igbt figure 8 output inverter igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a output inverter e on e off e on: e off 0 3 6 9 12 15 0 40 80 120 160 200 i c (a) e (mws) e off e on e on e off 0 5 10 15 20 25 0 8 16 24 32 40 r g ( w ) e (mws) e rec e rec 0 2 4 6 8 10 12 0 40 80 120 160 200 i c (a) e (mws) e rec e rec 0 2 4 6 8 0 8 16 24 32 40 r g ( w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 7 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a r goff = 4 figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v output inverter t doff t f t don t r 0,001 0,01 0,1 1 0 40 80 120 160 200 i c (a) t ( m s) t rr t rr 0 0,2 0,4 0,6 0,8 1 0 8 16 24 32 40 r gon ( w ww w ) t rr ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t rr t rr 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0 50 100 150 200 i c (a) t rr ( m s) 25 / 150 25 / 150 copyright vincotech 8 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(ic) q rr = f(r gon ) atat at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(ic) i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v output inverter i rrm i rrm 0 50 100 150 200 250 300 0 8 16 24 32 40 r gon ( w ww w ) i rrm (a) q rr q rr 0 5 10 15 20 25 0 8 16 24 32 40 r gon ( w ) q rr ( m c) i rrm i rrm 0 40 80 120 160 200 240 0 50 100 150 200 i c (a) i rrm (a) q rr q rr 0 5 10 15 20 25 0 40 80 120 160 200 i c (a) q rr ( m c) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 9 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 19 figure 20 igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(tp) z thjh = f(tp) at at d = tp / t d = tp / t r thjh = 0,36 k/w r thjh = 0,44 k/w r thjh = 0,63 k/w r thjh = 0,63 k/w single device heated all devices heated single device heated all devices heated igbt thermal model values fwd thermal model values r (k/w) tau (s) r (k/w) tau (s) r (k/w) tau (s) r (k/w) tau (s) 0,03 5,4e+00 0,11 5,36 0,02 9,9e+00 0,02 9,88 0,06 1,1e+00 0,06 1,05 0,09 1,4e+00 0,09 1,39 0,14 1,4e01 0,14 0,14 0,13 2,3e01 0,13 0,23 0,10 2,6e02 0,10 0,03 0,27 4,5e02 0,27 0,04 0,02 1,7e03 0,02 0,00 0,07 1,1e02 0,07 0,01 0,02 2,4e04 0,02 0,00 0,04 7,6e04 0,04 0,00 output inverter t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 di 0 /dt di rec /dt 0 2000 4000 6000 8000 10000 0 8 16 24 32 40 r gon ( w ) di rec / dt (a/ m s) di 0 /dt di rec /dt 0 1000 2000 3000 4000 5000 6000 7000 8000 0 40 80 120 160 200 i c (a) di rec / dt (a/ m s) 25 / 150 25 / 150 copyright vincotech 10 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c single heating t j = 175 c overall heating v ge = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 100 200 300 400 500 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) i c (a) 0 50 100 150 200 250 300 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 11 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collectoremitter voltage i c = f(v ce ) v ge = f(qg) at at d = single pulse i c = 100 a th = 80 oc v ge = 15 v tj = t jmax oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 10us 0 2,5 5 7,5 10 12,5 15 17,5 0 100 200 300 400 500 qg (nc) v ge (v) 240v 960v copyright vincotech 12 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c vge from 7 v to 17 v in steps of 1 v vge from 7 v to 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 0 2 4 6 8 10 v ge (v) i c (a) tj = 25c tj = tj max -25c 0 15 30 45 60 75 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) tj = 25c tj = t jmax -25c 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 7 brake igbt figure 8 brake igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a brake e rec e rec 0 0,5 1 1,5 2 2,5 3 3,5 4 0 20 40 60 80 100 i c (a) e (mws) e rec e rec 0 0,5 1 1,5 2 2,5 3 0 8 16 24 32 40 r g ( w ww w ) e (mws) e off e on e on e off 0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 i c (a) e (mws) e off e on e on e off 0 1,5 3 4,5 6 7,5 0 8 16 24 32 40 r g ( w ww w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 14 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 11 brake igbt figure 12 brake fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0,60 k/w r thjh = 1,27 k/w brake t doff t f t don t r 0,001 0,01 0,1 1 0 20 40 60 80 100 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 copyright vincotech 15 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 brake fwd figure 16 brake fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 50 100 150 200 250 300 0 50 100 150 200 th ( o c) p tot (w) 0 16 32 48 64 80 0 50 100 150 200 th ( o c) i c (a) 0 20 40 60 80 100 120 140 0 50 100 150 200 th ( o c) p tot (w) 0 8 16 24 32 40 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 1 brake inverse diode figure 2 brake inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 1,81 k/w figure 3 brake inverse diode figure 4 brake inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake inverse diode 0 5 10 15 20 25 30 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) tj = 25c tj = tj max -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 17 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 0,62 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 50 100 150 200 250 300 0 0,4 0,8 1,2 1,6 2 v f (v) i f (a) tj = 25c tj = tjmax-25c t p (s) z thjc (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 0 50 100 150 200 250 0 30 60 90 120 150 th ( o c) p tot (w) 0 20 40 60 80 100 0 30 60 90 120 150 th ( o c) i f (a) copyright vincotech 18 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 1 thermistor typical ntc characteristicas a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r (  ) copyright vincotech 19 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet t j 150 c r gon 8 r goff 8 figure 1 output inverter igbt figure 2 output inverter igbt turnoff switching waveforms & definition of tdoff, t eoff turnon switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = 15 v v ge (0%) = 15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t doff = 0,36 s t don = 0,18 s t eoff = 0,71 s t eon = 0,48 s figure 3 output inverter igbt figure 4 output inverter igbt turnoff switching waveforms & definition of t f turnon switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t f = 0,11 s t r = 0,04 s switching definitions output inverter general conditions == = i c 1% u ce 90% u ge 90% 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 1 time (s) % t doff t eoff uce ic u ge ic 10% uge 10% t don u ce3% -40 0 40 80 120 160 200 240 2,5 2,7 2,9 3,1 3,3 3,5 3,7 3,9 time(s) % ic uce t eon uge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 time (s) % uce ic t f i c10% ic90% -40 0 40 80 120 160 200 240 3,1 3,15 3,2 3,25 3,3 3,35 3,4 time(s) % tr uce ic copyright vincotech 20 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 5 output inverter igbt figure 6 output inverter igbt turnoff switching waveforms & definition of t eoff turnon switching waveforms & definition of t eon p off (100%) = 59,90 kw p on (100%) = 59,90 kw e off (100%) = 8,77 mj e on (100%) = 10,51 mj t eoff = 0,71 s t eon = 0,48 s figure 7 output inverter fwd turnoff switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 100 a i rrm (100%) = 129 a t rr = 0,34 s switching definitions output inverter ic 1% uge90% -15 15 45 75 105 0 0,2 0,4 0,6 0,8 1 time (s) % p off e off t eoff u ce3% u ge10% -40 0 40 80 120 160 200 2,8 3 3,2 3,4 3,6 3,8 time(s) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -160 -120 -80 -40 0 40 80 120 2,8 3 3,2 3,4 3,6 3,8 4 time(s) % id ud fitted copyright vincotech 21 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet figure 8 output inverter fwd figure 9 output inverter fwd turnon switching waveforms & definition of t qrr turnon switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 100 a p rec (100%) = 59,90 kw q rr (100%) = 19,13 c e rec (100%) = 7,39 mj t qint = 0,92 s t erec = 0,92 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 2,8 3,2 3,6 4 4,4 time(s) % id q rr -20 0 20 40 60 80 100 120 3 3,2 3,4 3,6 3,8 4 4,2 4,4 time(s) % p rec e rec t erec copyright vincotech 22 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet in datamatrix as in packaging barcode as without thermal paste 12mm housing p760a p760a pin x y pin x y 1 dc 71,2 0 33 g 10,6 37,2 2 dc 68,7 0 34 g 18,45 37,2 3 dc 66,2 0 35 e 21,25 37,2 4 dc 63,7 0 36 v 24,05 37,2 5 dc+ 55,95 0 37 v 26,55 37,2 6 dc+ 53,45 0 38 v 29,05 37,2 7 dc+ 55,95 2,8 39 w 36,1 37,2 8 dc+ 53,45 2,8 40 w 38,6 37,2 9 dc+ 48,4 0 41 w 41,1 37,2 10 dc+ 45,9 0 42 e 43,9 37,2 11 e 38,9 0 43 g 46,7 37,2 12 dc 36,1 0 44 l1 53,7 37,2 13 g 38,9 2,8 45 l1 56,2 37,2 14 dc 36,1 2,8 46 l1 58,7 37,2 15 dc 31,3 0 47 l2 71,2 37,2 16 e 28,5 0 48 l2 71,2 34,7 17 dc 31,3 2,8 49 l2 71,2 32,2 18 g 28,5 2,8 50 l3 71,2 25,2 19 r2 19,3 0 51 l3 71,2 22,7 20 r1 19,3 2,8 52 l3 71,2 20,2 21 dc+ 12,3 0 53 brc 71,2 12,8 22 dc+ 9,8 0 54 brc 68,7 12,8 23 dc+ 12,3 2,8 55 brg 71,2 5,6 24 dc+ 9,8 2,8 56 bre 71,2 2,8 25 e 2,8 0 26 dc 0 0 27 g 2,8 2,8 28 dc 0 2,8 29 u 0 37,2 30 u 2,5 37,2 31 u 5 37,2 32 e 7,8 37,2 pinout ordering code & marking ordering code and marking outline pinout version outline ordering code pin table v23990p760apm copyright vincotech 23 19 dec 2014 / revision: 4
v23990-p760-a-pm datasheet disclaimerlife support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. copyright vincotech 24 19 dec 2014 / revision: 4


▲Up To Search▲   

 
Price & Availability of V23990-P760-A-D4-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X